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In this paper we address the question of the existence of a well defined, non- 
trivial fractal dimension D of self-affine clusters. In spite of the obvious 
relevance of such clusters to a wide range of phenomena, this problem is still 
open since the different published predictions for D have not been tested yet. An 
interesting aspect of the problem is that a nontrivial global dimension for 
clusters is in contrast with the trivial global dimension of self-affine functions. As 
a much studied example of self-affine structures, we investigate the infinite direc- 
ted percolation cluster at the threshold. We measured D in d =  2 dimensions by 
the box counting method. Using a correction to scaling analysis, we obtained 
.D = 1.765(10). This result does not agree with any of the proposed relations, but 
it favors D =  1 + ( 1 - a v l l ) / a v i ,  where vii and v• are the correlation length 
exponents and a is a Fisher exponent in the cluster scaling. 
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1. I N T R O D U C T I O N  

A r e a l i z a t i o n  of  t h e  i m p o r t a n c e  of  f r ac t a l  g e o m e t r y  in  d e s c r i b i n g  a l a rge  

v a r i e t y  o f  p a t t e r n s  o c c u r r i n g  in n a t u r e  h a s  b e e n  o n e  of  t h e  m a j o r  d e v e l o p -  

m e n t s  o f  t h e  l a s t  decade .  (1 3) I t  s eems  t h a t  we a re  s u r r o u n d e d  b y  ob j ec t s  

w h i c h  a re  scale  i n v a r i a n t  a n d  h a v e  a n o n t r i v i a l  f r ac t a l  d i m e n s i o n .  
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The simplest kind of scale invariance is self-similarity, i.e., invariance 
with respect to homogeneous dilution or contraction. Recently, however, 
interest has increased in self-affine structures which are characterized by 
anisotropic scaling. The record of a one-dimensional random walker (the 
displacement vs. time function) or a rough surface are typical examples. By 
now much is known about this kind of self-affine fractal. Our paper deals 
with another category of self-affine fractals whose global dimension is not 
trivial. Considerably less is known about the fractal aspects of these objects. 
Obvious questions of the following nature still remain: do such clusters 
have a well-defined fractal dimension? If yes, how is its value related to the 
exponents describing the anisotropic scaling? 

A variety of growth models leading to self-affine aggregates have been 
studied in the past (including directed animals and diffusion-limited 
aggregates in cylindrical geometry(5)). However, perhaps the simplest 
growth model resulting in branching self-affine clusters is directed percola- 
tion. (6-9) Directed percolation (DP) has much to recommend it as a model 
for study. It is the primary example of nonuniversal behavior in a percola- 
tion system. DP has many potential applications, including transport in 
a strong external field, (1~ crack propagation, (11) and epidemics with a 
bias. (12) In addition, interesting mappings between directed percolation and 
various theoretical approaches have been established. (6) 

In directed bond percolation, as in ordinary (undirected) percolation, 
bonds are occupied with a fixed probability p. In DP the bonds can be 
represented as arrows oriented according to an external direction and per- 
colation against the arrows is forbidden. The special direction can often be 
considered as time, while directions orthogonal to it have spatial proper- 
ties. There is a critical point Pc in this system in dimensions d~> 2 so that 
for p > Pc the probability of an infinite cluster is nonzero. 

A cluster in DP is defined as the set of sites reachable from the origin 
via occupied directed paths. Typical clusters for p r Pc are anisotropic and 
they are characterized by two different correlation lengths: ~lb (parallel to 
the time direction) and ~• (perpendicular to it). As p approaches the 
critical point, the two correlation lengths diverge with different exponents: 

(1) 

The Markovian character of DP, i.e., the fact that the properties for 
time t ' >  to do not depend on t <  to but on the configuration at t =  to, 
makes the use of approximate methods easy and effective. However, no 
analytic solution of the critical behavior is known. Recently a number of 
results have been obtained for DP regarding, for example, the supercritical 
correlation length exponent in three dimensions, (13'14) the spectrum of the 
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transfer matrix, vS~ the relation to self-organized criticality, (16'17) and viola- 
tion of hyperscaling for DP. (~8~ The extension of the Kasteleyn-Fortuin 
formalism to DP  makes similarities and differences between DP and 
ordinary percolation apparent. (~9) In spite of all the recent attention, the 
fractal dimension of the DP  infinite cluster at Pc has not yet been calculated 
directly. 

In the present paper we first give a short discussion about the fractal 
dimension of self-affine structures and of the infinite DP  cluster in 
particular (Section2). In section 3 the method of calculation and the 
algorithm are described. The results are presented in Section4. We 
conclude the paper with a short summary. 

2. S E L F - A F F I N E  F R A C T A L S  A N D  S C A L I N G  

In general, for structures which are invariant under a certain linear 
coordinate transformation, all elements of the corresponding transformation 
matrix could be different from zero. However, we restrict ourselves to cases 
where the objects are embedded into two-dimensional Euclidean space and 
the matrix is diagonal with different elements. The matrix then describes an 
affine transformation and objects invariant under such a transformation are 
called self-affine. (41 

The simplest such object is the graph of a power-law function. In order 
to arrive at a fractal one has to make this object "fuzzy" as in the 
Mandelbrot-Weierstrass function. (4~ A random version is the record of dis- 
placement F vs. time t of a particle undergoing Brownian motion. The 
function F(t) has the scaling property F(t) ,,~ b-~F(bt) ,  at least in a statisti- 
cal sense. (For Brownian motion H =  1/2.) Such a function is characterized 
by a nontrivial local fractal dimension Dz. If the graph of the function is 
covered by boxes of linear size e, the number of boxes N~ changes as 
N~ ~ ~ -D~ with D t = 2 - H for e --, 0. 

The global fractal dimension D is defined by introducing a lower cutoff 
in e and counting the number N~ of boxes covering the object so that larger 
and larger objects are considered while the cutoff is kept fixed. For self- 
affine functions of a scalar variable like the time the global dimension is 
trivially unity. As an illustration, let us consider the record of a discrete- 
time, discrete-step one-dimensional random walk. If it is plotted on a square 
lattice, then the global dimension is unity (see, e.g., p. 288 of ref. 2), since 
a square box of linear size ~ can cover the random walk over e time steps. 
Moreover, the equal units of the square lattice in time and space directions 
lead to the loss of the local fractal properties.(4) Of course, self-affine func- 
tions of higher-dimensional arguments can also be considered. 

In order to obtain self-affine structures with nontrivial global fractal 
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properties one has to go beyond the self-affine functions. In most cases the 
direct product of two fractals of different fractal dimensions D1 and D 2 
leads to a self-affine object. (3) If we consider two fractals embedded into 
one-dimensional space, the direct product will be embedded into two 
dimensions and its x and y coordinates will be respectively the coordinates 
of the initial fractal sets. According to the addition rule, (~ 3) the global 
fractal dimension of the direct product is then 

D =  DI + D 2 (2) 

If we cut such a cluster by straight lines parallel to the composing 
directions, we obtain the original fractal sets. It is known from percolation 
theory {6'2~ that on a line cut along the parallel axis the infinite DP cluster 
P = Pc has a fractal dimension 

DII = 1 -fl/vll (3a)  

For the cut in the perpendicular direction we have in d dimensions 

D• = d -  1 - fl/v• (3b) 

In (3), fl is the exponent of the order parameter, i.e., the weight of the 
infinite cluster. If the infinite DP cluster can be considered as a self-affine 
fractal resulting from a direct product of fractals with dimensions Dll and 
D• then, according to (2), we would have 

D = D •  +D,,=d_f l (_~H + 1 )  ( 4 )  

Deterministic growth with an anisotropic seed can also result in a self- 
affine fractal. An example is the squeezed (21) Vicsek snowflake. (2a) A 
possible way to calculate the fractal dimension of such an object is 
provided by the following argument. Let us suppose that in one direction 
the object grows as n k and in the other as rn k while the number of particles 
grows as s k. An estimate of the volume is given by (nmff. Thus, a charac- 
teristic length can be defined as (rim) k/2. Using this rough argument, we 
arrive at 

2 log s 
D = (5) 

log n + log m 

Such reasoning can be applied whenever the scaling of the width, the 
length, and the number of particles in the cluster is known. 

This is the case for the infinite DP cluster at threshold. It can be 
obtained as the limiting object of finite clusters as p, is approached from 
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below. Then the size of the typical cluster scales as s ~ ( p c - p ) - ~ / L  The 
Fisher exponent cr appears in the scaling function f of the cluster numbers 
ns ~ s -~ f ( s~(p-Pc) )  with z being the other Fisher exponent. The width of 
the typical clusters is given by ~• the length by ~r/. Thus, the argument 
leading to (5) suggests 

2 
D (6) ~r(vll +v• 

or, in d dimensions, ~6) D = d/[cr(vll + ( d -  1) v• 
One can, however, arrive at a different formula by using the following 

argument, c53 For  ordinary percolation there is only one characteristic 
length ~ in the system. The ratio s/~ D approaches a constant for p ~ Pc: the 
infinite cluster of ordinary percolation at threshold is a self-similar fractal. 
For  self-affine fractals a correction due to the two different characteristic 
lengths should be taken into account. For DP  we assume this correction to 
have the form s / ~  ~ ~ll/~• which expresses the fact that ~• ~ ~ll and leads 
to 

1/~r- vll 
D = I + - -  (7) 

Assuming, on the other hand, that the cuts not in the parallel direction are 
generic, i~e., they have D• irrespective of the angle (P. Grassberger, private 
communication), one can use the formula (~) D = 1 + D• leading to 

D = d  /3 (8) 

Formulas (7) and (8) are equivalent, since l / a =  v,i + ( d - 1 ) v •  In the 
following we shall restrict ourselves to two dimensions. 

3. THE A L G O R I T H M  

The clusters which we study are constructed as follows. Consider a 
square lattice which is rotated 45 deg (so that all bonds close 45 deg with 
a horizontal line). In this way the lattice is made up of horizontal rows of 
sites at the vertices of double bonds (/x ) and a directedness can be defined 
by associating with each bond an arrow pointing "down." One of the sites 
is chosen to be the origin. The two bonds connected to the origin from 
below are considered for occupation with probability p. This means that 
for each bond a random number r is generated and if r < p, the bond is 
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Fig. t. Two-dimensional directed bond percolation cluster at Pc after 3072 time steps. 
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occupied. In the following step all bonds connected to the previous 
occupied bonds from below are occupied with probability p, and so on. 

For  p smaller than the critical Pc the growing cluster dies out, in 
most cases, after a few steps. If p > Pc, the cluster almost always grows 
forever and has a finite density and overall conical shape with a well- 
defined p-dependent angle going to zero as p ~ Pc. At Pc the situation is 
qualitatively different in that, while many clusters may die out before 
becoming very large, in a reasonable fraction of attempts one can obtain 
extremely extended clusters which possess self-affine fractal properties. 

The critical parameters of directed bond percolation on the square 
lattice are known to high accuracy~7): pc=0.644701(1),  vl1=1.7339(3), 
v~ = 1.0969(3), /3 = 0.277(2), and ~r--0.392(3). The length and width scale 
as ~ti ~ ~o, where the anisotropy exponent 0 = vti/v• = 1.581. 

Clusters were grown from a seed at Pc up to lengths T =  2 k with k 
between 12 and 15. Typically, 20-30% of clusters reached the desired 
length. A typical directed percolation cluster extending to 3000 time steps 
is presented in Fig. 1, perhaps the first time such an extensive directed 
percolation cluster is depicted in the literature. 
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(b) 

Z 

i -  

15- 

14-  

1,.3- 

12-  

11-  

1:I 4' 

~E 

t 

ZS 

A 

A 

A 

L _ _ _  ] ._1 ] ] 
- 8  - 7  - 6  - 5  - 4  

In ( I /L )  

e 

e 

e 

�9 ~E 

e A 

A 

A 

& A 

A A 

Z~ 

A 

- 3  - 2  -1 0 

(e) 

Z 

e- 

14 

12 

10 

8 

6 ~ -  

o t 
- 8  

t 

~E 

A 

~E �9 A 

�9 A 

A 

& 

A 

A 

Z~ 

t ~E A 

~E A z~ 

A z~ 

A 

[ I 1 1 I t J J 
- 7  - 6  - 5  - 4  - 3  - 2  -1  0 

I n ( l / L )  

Fig. 2. (Continued) 



S e l f - A f f i n e  Fractal  Clusters 837 

The algorithm used one bit per site, so that 64 sites could be generated 
simultaneously on the Cray YMP. In order to further facilitate bit-coding, 
an array of constant width was used even though, in the initial stages, most 
of the bonds would be unoccupied. Array widths of between T/4 and T/8 
were found to suitably contain the clusters considered here. With a 
vectorized algorithm employing multi-spin-coding as well as line-by-line 
updating and counting, it was possible to grow and analyze a system of 
length T =  32,768 and width T/8 using 15 sec of C P U  time on the Cray 
YMP. This includes the full box counting analysis on the cluster. 

The method used for determination of fractal dimension was box 
counting, (3) which counts the number of boxes N required to cover all of 
the sites. Boxes of size L = 2 to L = T/8 (in most cases) were used on the 
second half of those clusters that reached the required size. The counting 
proceeded concurrently with the growth so that it was necessary to store 
the data from just two rows at any given time. Three different calculations 
were performed so as to obtain the fractal dimension of a cut or strip along 
the parallel direction, of a cut along the perpendicular direction, as well as 
the two-dimensional fractal dimension, 

For  the perpendicular case, linear boxes were applied to a cut or strip 
along the perpendicular direction. Rather than consider just a single cut 
across the cluster, however, we made a cut each time a new row was 
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generated. For the parallel case, the cuts were oriented along the parallel 
direction so that successive boxes of size L - - 2  were counted at every 
second time step. If a given box were to contain an occupied site, then the 
box of size L = 4 in which the smaller box was situated would also be 
occupied. In this way, boxes of size L = 4  (8, 16, 32,...) needed to be con- 
sidered only every 4 (8, 16, 32,...) time steps during the cluster growth. This 
method was also applied in the two-dimensional case using square boxes of 
dimension L. 

4. RESULTS 

The results of several hundred (in the case of size 32,768) to several 
thousand (in the case of size 4096) clusters were averaged. The results of 
box counting for various cluster lengths are presented in Fig. 2, which is a 
log-log plot of N vs. inverse box size (I/L). Finite-size effects due to system 
size and box size are visible as curvature at the ends. The slope of the 
central straight-line region corresponds to the effective fractal dimension 
Derf for the finite system. A more detailed picture emerges from looking at 
the slopes between successive data points. Figure 3 presents the two-dimen- 
sional data and clearly shows an increase with system size. Similar results 
were obtained for the data of Figs. 2a and 2b. It is possible to infer the 
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Table I. Comparison of Proposed and Calculated 
Values of the Fractal Dimension D 

Equation D 

(4) 1.585(5) 
(6) 1.804(13) 
(7)or (8) 1.747(3) 
Our result 1.765(10) 

fractal dimension for the case of an infinite cluster by assuming scaling with 
system length T of the form 

D e ~ = D ( I + c T  ~) (9) 

where Deff refers to systems of finite size and D refers to the infinite system. 
Using several trial values for D and corresponding interval slopes as 
described in Fig. 3, for example, as the De~ values, we obtained log-log 
plots of ( D -  D,~) vs. T (Fig. 4). The true value of D in each case would 
correspond asymptotically to a straight-line graph. We estimate 
DII =0.833(3), D .  =0.740(5), and for the fractal dimension of the whole 
cluster D =  1.765(5). The correction to scaling exponent ~c is determined 
less precisely as ~c ~- 0.8(2). The value of the correction to scaling exponent 
is comparable to other estimates. (is) 

The results were obtained by using only the critical value Pc as input. 
However, if we compare our estimates for Dll and D• with the best 
available data from the literature, (7) we realize the possibility of uncon- 
trolled systematic errors. While for D• our error bar overlaps with that of 
the best estimate [0.747(2)], for Dll we should increase our error bar by 
a factor of two in order to overlap with the best estimate 0.840(2). This 
implies that the suggested error in D of 0.005 might also be larger by a 
factor of about two. 

In Table I we summarize the proposed values for the fractal dimension 
of critical directed percolation clusters in two dimensions together with our 
numerical estimate with the doubled error bar. It is clear that the present 
calculation favors (7). 

5. C O N C L U S I O N S  

We have discussed various conceptual questions arising in the context 
of determining the global fractal dimension of self-affine clusters. The com- 
plexity of the situation is demonstrated by the fact that different heuristic 
arguments lead to expressions for D which are inconsistent with each other. 
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Apparently, at present there is no theoretical basis to single out which 
equation for D is the correct one. 

Therefore, using simulations, we have obtained accurate numerical 
estimates for D, D it, and D• for the case of two-dimensional directed 
percolation clusters at the threshold and compared our estimate with those 
available in the literature. Our calculations have shown that only very 
large-scale simulations can be conclusive enough for this purpose. None of 
the heuristically derived formulas agree with our result. However, it is clear 
that the difference from (7) [-or (8)] is so small that these formulas are 
favored over the other proposed relations. 
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